
Parameter values t ~ 3 (u 0 > 0, A = -3 - in 2) may also be considered, corresponding to 
motion of the cylinder in the direction of the z axis in the presence of liquid injection 
through the surface. 

NOTATION 

x, y, Cartesian coordinates; r, z, cylindrical coordinates; r0, cylinder radius; u, v, 
longitudinal and transverse (to the direction of surface motion) velocity components; u0, 
velocity of surface motion; v0, suction or injection rate through surface; q, parameter de- 
termining the suction or injection intensity; ~, kinematic viscosity; N, self-similar vari- 
able in Eq. (I); $ = r/r0, dimensionless radial coordinate; t, parameter in Eqs. (2) and (3) 
proportional to the boundary-layer thickness; 6, boundary-layer thickness; k, constant con- 
ditionally determining the boundary-layer thickness with respect to the degree of velocity 
drop at its boundary, u = ku 0 when r = r 0 + 6; A, constant in Eqs. (2) and (3); z,, conbina- 
tion of parameters with the dimensions of length, as defined in Eq. (2); e, auxiliary parame- 
ter defined in Eq. (2); ~ = u/u 0, "~= v/v0, z = z/Iz, I , auxiliary parameters used in Figs. 
2 and 3. 
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TURBULENT FLOW OF A FIBROUS SUSPENSION IN A PIPE 

A. R. Kuznetsov, A. Ya. Ageev, 
and S. A. Kuznetsova 

UDC 532.542.4 

The Henky-llyushin equations are used to describe the steady turbulent flow of 
an incompressible viscoplastic fluid in a pipe. A fibrous suspension is examined 
as the fluid. 

The class of viscoplastic fluids contains a large number of systems such as cement mor- 
tars, oil-sand mixtures, oils, coal suspensions, etc. [I]. Fibrous suspensions of cellulose 
and asbestos in turbulent flow regimes can also be regarded as viscoplastic fluids. 

~ 

A large number of investigations have been made of the laminar flow viscoplastic fluids, 
while the turbulent flow of these fluids has received little attention. Thus, the authors 
of the monograph [i] examined different problems connected mainly with the laminar motion of 
viscoplastic media. Several studies [2-4] have examined the laws governing the motion 3f 
fibrous suspensions. Here, researchers have obtained an extensive amount of experiment~l 
data and have developed an empirical approach to the study of the turbulent flow of fibcous 
suspensions. The authors of [5, 6] examined the turbulent flow of sand suspensions with the 
use of equations for each phase and with allowance for interaction of the phases. This ap- 
proach leads to very complicated relations which include several unknowns and require time- 
consuming numerical study. In connection with this, it is interesting to examine the suudy 
[7]. Here, continuum conservation equations for the phases of the suspension were obtained 
using Feynman integrals over trajectories. 

The motion of viscoplastic media is described by the Henky-ll'yushin differential equa- 
tions. These equations appear as follows in vectorial form for an incompressible fluid [i]: 
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H =  

du __. F__ gradp q_ 1 ( % )  2"% 
dt p p ~ +H- A u - - ~ S g r a d H ,  pH 2 

o.o:  :o., + o., 
\ oy +-~x J +k Oz + Ox ] ( + T Oy : 

+'( o,  : + 2  +2( -g-z]  l Oy } 

+ 

(1) 

(2) 

We will examine the turbulent steady flow of an incompressible viscoplastic fluid in a 
plane pipe. We direct the x axis of the Cartesian coordinate system parallel to the flow, 
while we place the y axis perpendicular to the broad walls of the pipe. Body forces will be 
ignored. Then we find from Eq. (i) that 

 i0,i dt - 0x ' 0 )  ~ + ~ , (3) 

O p _ 0, (4) 
ay 

ap _ o. ( 5 )  
0z 

Averaging Eq. (3) over time with  allowance for  the  mean and f l u c t u a t i o n  values of veloc-  
i t y  and pressure  in the  flow, we obta in  the  fo l lowing ( the  bar above the  q u a n t i t i e s  denotes 
averaging)  

Op_ o ( o.1 -p.; .; i .  
ox oy ~ -b-f/ + ~~ (6) 

In the Boussinesq approximation [8], we write Eq. (6) in the form 

Op = O [(~q_A ) Ou~ + ~ 0 ] .  (7) 
Ox Oy Oy 

Analyzing the  d i f f e r e n t i a l  equat ions  of motion of the f l u i d  in s t r e s s e s  [8] and gq. (7) ,  
we can conclude that the expression in brackets in gq. (7) is the component T12 of the stress 
tensor: 

"q2 = (~ + A) Oul 
Oy + ~o. (8) 

As a rule, the quantity p can be ignored. Thus, we find from (8) that 

T12 = A ~ + %. (9) 

It is known [8] that the flow of a fluid in plane and circular pipes is described by 
the same relations. Thus, we can use Eq. (9) to describe the motion of a viscoplastic 
fluid in a circular pipe. This is of great practical importance, and the results obtained 
in this case would be important for understanding the laws governing flow under any other 
conditions [8]. 

We will examine the motion of a fibrous suspension in a circular pipe. A rod regime 
of flow is seen [2] for low mean flow velocities. An increase in velocity is accompanied 
by stratification of the dispersed suspension next to the pipe wall and retention of the 
rod regime in the center. The flow of the suspension is turbulent in this case [9]. It 
was termed transitional in [2]. Finally, at high flow velocities, the rod in the center of 
the pipe disintegrates and the suspension exhibits dispersed flow [2]. 

It should be noted that turbulence can arise in the rod flow regime for a fibrous 
suspension when the concentration is on the order of 1% (such concentrations are frequently 
used in practice, such as in the cellulose-paper industry) in the layer of water next to 
the pipe wall. This phenomenon has been observed for a wide range of pipe diameters [2, 3, 
4, 9]. Thus, a turbulent regime is seen in transitional and dispersed flows of the suspen- 
sion. In connection with this, we will not examine questions related to the transition to 
turbulence in the present study. 
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Using the Prandtl formula for eddy viscosity [8] and Eq. (9), we obtain 

w~f 1/%- % (10)  u = ~ In g + c, u = Ul. u, ef -~- 
Xn [/ p 

We use (i0) to find the following formula to calculate the velocity defect of the su::pension 

U~ax--u= V*ef-ln• Rely ' R e f = R (  1 -  ~w'~'---t) . (11)  

In the transitional and dispersed flows of a fibrous suspension with a concentration on 
the order of I%, the concentration of the suspension next to the pipe wall is close to zero 
[9]. We will therefore assume that the distribution of dimensionless eddy viscosity 
A/(v,R@) along the dimensionless coordinate Y/Ref is close to linear and is independent of 
the Reynolds number. Nearly the same distribution is valid for water [8]. 

Having assumed, as in the case of water, that the eddy viscosity of the suspension at 
the distance Y0 from the wall is constant, we obtain 

~'l'3nef--, ~nef-~ .l:3n ( ] ,  - -  -- ' r~ V, = 1 / /  Tp.. (12)  /..t/o ~ O, ~w 

With allowance for (12), we can use (i0) to find a formula to calculate the velocity ~ia- 
grams of a fibrous suspension in hydraulically smooth pipes 

u0 u ___ V,ef in V,b' -I-D n D n ......... (13)  
v, v, N ~'t3 nef v, 

We will examine the motion of a fibrous suspension in a hydraulically rough pipe We 
write Eq. (13) in the following form: 

....... V*,ef In - - I n  - =  +Dn ,  a - ~ - -  (14)  
[,', V, Xn ~r 

We will assume that the following equality is valid under the condition ~w >> To in the 
intermediate regime and in the regime in which pipe roughness is manifest to the full extent 

I ln l3n +D,n__ 1 In ~.n . . . . . .  + D n--- const. (15)  
Xn ~ x n ac t  

In  t e r m s  o f  s t r u c t u r e ,  t h e  q u a n t i t y  a i s  s i m i l a r  t o  t h e  R e y n o l d s  number .  I t  t h e r e f o r e  has  
some c o n s t a n t  v a l u e  d u r i n g  t h e  t r a n s i t i o n  f rom l a m i n a r  t o  t u r b u l e n t  f l o w .  

We a l s o  n o t e  t h a t  a s s u m p t i o n  (15)  was u s e d  i n  c a l c u l a t i o n s  f o r  t h e  f l o w  o f  w a t e r  [ 1 0 ] .  
I n  t h e  g e n e r a l  c a s e ,  we f i n d  f rom (15)  t h a t  

..... ~.*efln [~nef + D n =  D*ef In ~ f  + D n ,  (16)  
v,x n (z D ,N n ~cr 

D n =  Dn- -  V'e----! In 
V*Xef ~ef (17) 

Replacing D n by D n in the case of flow of the suspension in a rough pipe and allo'~ing 
for (17), we can use (14) to obtain a formula for calculation of the velocity diagrams in 
rough pipes 

U U,e f ( ] i i@__~i i . [~ne f  in.... ~ ) 
"V, = 5,~fn o~ G~cr- ~- n n "  (18)  

or 

g O*ef |n Y + Dn, Ye f y(l T~w~ ) ~n -- " = -- , ~ = (19) 
U,  ~,~n ks ~ef ~cr 

As the quantity ~, the quantity ~n is similar in structure to the Reynolds number. 
Thus, the constant y - being the ratio of two quantities of the same physical nature - is 
independent of the properties of the suspension and is roughly equal to the analogous con- 
stant for water (y z 70/5 = 14). 

At ~ = ~cr, the pipe becomes hydraulically smooth and Eq. (19) becomes Eq. (13). 
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Thus, three different regimes can be distinguished for the turbulent pipe flow of a 
fibrous suspension: 

I) regime in which roughness is not manifest, when 

o < ~  ~<%r ; (20)  

2) intermediate regime 

acr ~ ~ ~ n e ~  (21) 

3) regime in  which roughness  i s  f u l l y  m a n i f e s t  

~ >  ~nef. (22) 

Le t  us deduce t h e  laws gove rn ing  r e s i s t a n c e  in  t h e  f low of  a f i b r o u s  suspens ion  in  t he  
t u r b u l e n t  regime [9 ] .  During t h e  t r a n s i e n t  mot ion  o f  t h e  s u s p e n s i o n ,  a f i b r o u s  rod i s  p r e s -  
e n t  in  t h e  c e n t e r  o f  t h e  f low.  ~s ing  Eq. (11) f o r  t h e  v e l o c i t y  d e f e c t ,  we can de t e rmine  t he  
mean v e l o c i t y  ove r  t h e  a n n u l a r  c r o s s  s e c t i o n  S a in  which t h e  d i s p e r s e d  su spens ion  i s  f l owing :  

-- 5 2 a ( R - - y )  In Y d y =  
V. ef xnSa o (23) 

-- 2 = R % f ( ~ e f  + 3  ) , n a s a  a = R - - R ~ .  

From here 

�9 2 ~ R e f t a  3 )  
Nav=gmax ~ S  a [---~-ef -~ ~,ef.  (24) 

We find the average velocity over the entire cross section of the pipe S: 

"S ~av = [Uav a +  u ~  (S - -  ~ ) ] /S ,  S = ~R2. (25)  

Having inserted (24) into (25), we obtain 

R ~  a 
Uav = Umax ~nRZ + �9 v,os (26) 

Expressing the quantity Uma x in (26) by means of formulas (13) and (14) for the veloc- 
ity distribution in smooth and rough pipes, we obtain the laws governing resistance for 
hydraulically Smooth pipes 

U a v ( ~  = V, e f  tn v* R + Dcv,. 20--T~ [%1(~w--%) + 3/4]v*ef (27) 
~n ~n xn 

and hydraulically rough pipes 

aep(%v ) _  v~f ~ R _}_Dnv, 2(1--%/%v)e[To/(Tw---%)+3/4]V, ef" (28) 

It should be noted that with a reduction in the concentration of the fibrous suspen- 
sion to zero 

%-+0,  ~n--+~ = 0.4,~n--+ ~ = 70, 

% v - + a c r : w = 5 ,  Dn-~D = t6.1 (29) 

and Eqs. ( 1 3 ) ,  ( 1 9 ) ,  ( 2 7 ) ,  and (28)  become t h e  wel l -known fo rmulas  f o r  w a t e r .  

Le t  us examine some e x p e r i m e n t a l  r e s u l t s  [ 9 ] .  F i g u r e  1 shows e m p i r i c a l  d a t a  and t h e o -  
r e t i c a l  f low c u rves  (dashed  l i n e s )  f o r  an a s b e s t o s  su spens ion  in  a p ipe  which i s  h y d r a u l i c -  
a l l y  smooth f o r  t h e  f low of  a su spens i on  w i th  a c o n c e n t r a t i o n  o f  1.1 wt,  % a t  T w ~ 9 .5  Pa 
( ~ i t h  a l l owance  f o r  Eq. (20)  and t h e  v a l u e s  ~n = 80, a c r  = 8 o b t a i n e d  from e x p e r i m e n t a l  
d a t a ) .  The f i g u r e  a l s o  shows r e s u l t s  o f  c a l c u l a t i o n  of  t h e  r e s i s t a n c e  curve  o f  a suspen-  
s i on  w i th  a c o n c e n t r a t i o n  o f  1.1 wt.  % based on Eq. (27) f o r  ~w ~ 9 .5  Pa and based on Eq. 
(28) f o r  T w ~ 9 .5  Pa. Here ,  we used c o n s t a n t  v a l u e s  of  t h e  suspens ion  p a r a m e t e r s :  ~0 = 4 
Pa, K n = 0 .32 ,  D n = 21.3 ( t h e s e  pa r ame te r s  were de t e rmined  wi th  t h e  use  o f  t h e  e x p e r i m e n t a l  

d a t a  in  [9] and t h e  r e l a t i o n s  o b t a i n e d  in  t he  p r e s e n t  i n v e s t i g a t i o n ) .  I t  i s  e v i d e n t  t h a t  f o r  
v a l u e s  o f  t h e  e f f e c t i v e  wa l l  shea r  s t r e s s  <Wef = Xw - ~0 on t he  o r d e r  o f  100 Pa, t he  e m p i r i -  
c a l  d a t a  d e v i a t e s  from t h e  t h e o r e t i c a l  r e s u l t s  and approaches  t h e  r e s i s t a n c e  cu rve .  This  i s  
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Fig. i. Experimental data (solid lines and points) and 
theoretical curves (dashed) describing the resistance en- 
countered in the flow of an asbestos suspension in a pipe 
~ = 98 mm with a roughness ks/D p = 8.4-I0-~: I) for water; 

concentration of suspension I.I wt. %; 3) 2.4 wt. %; 4) 
calculation with constant ~n, Dn; 5) calculation with vari- 
able ~n, Dn, ~w, Pa; Uav, m/sec; To, Pa. 

Fig. 2. Experimental data (solid curves and points) and 
theoretical curves (dashed) describing the resistance en- 
countered in the motion of an asbestos suspension in a pipe 
Dp = 213 mm with a roughness ks/D p = 1.8-I0-~; i) for water; 
2) concentration of suspension i.I wt. %; 3) 1.5 wt. %; 4) 
2.0 wt. %; 5) 2.4 wt. %. 

evidently due to the fact that the extinction of turbulent pulsations in the flow by the 
fibers diminishes with an increase in TWe f. Here, the values of the parameters of th~ sus- 

pension ~n, ~n, acr, and D n approach the analogous constants for water and, in the linit, 
the resistance curves of the suspension and water merge. 

Analysis of the experimental data in [9] showed that the following relation exists for 
the parameters of the suspension: 

Pn = Pfi ~- ~ w - -  Pn ) [ 1 - -  exp ( - -  k n ~%f)].  ( 3 O) 

The  c o e f f i c i e n t  k n c a n  be  t a k e n  t o  be  c o n s t a n t  f o r  a l l  o f  t h e  p a r a m e t e r s .  F o r  an  a s -  
b e s t o s  s u s p e n s i o n  w i t h  a c o n c e n t r a t i o n  o f  1 .1  w t .  %, k n = 4 . 4 " 1 0  - a  1 / P a .  

It is evident from Fig. 1 that in the case of variable parameters, the theoretical re- 
sistance curve of the suspension satisfactorily agrees with the experimental data. 

Figure 2 shows that satisfactory agreement is also obtained between the empirical data 
and data calculated from Eq. (27) for the motion of an asbestos suspension in a hydraulically 
smooth pipe. 

It is evident from Figs. 1 and 2 that the limiting shear stresses of the suspension 
correspond approximately to the points of intersection of the resistance curves for the 
suspension and water and increase with an increase in the concentration of the suspension. 

Figure 3 shows theoretical resistance curves for the motion of an asbestos suspend:ion 
in a pipe in the case where the roughness of the pipe wall becomes manifest. 

Thus, study of the steady turbulent flow of an incompressible viscoplastic fluid Jn a 
pipe has yielded relations which describe the turbulent flow of a fibrous suspension ir pipes. 
These relations can be used to calculate the hydraulic transport of suspensions and to de- 
sign hydraulic machinery and equipment in which the working fluid is a suspension. 

NOTATION 

u, flow velocity vector; ul, u=, u 3, projections of the velocity vector on the coordinate 
axes; u~, u[, fluctuation velocities; t, time; F, vector of body forces; p, density of suspen- 
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Fig. 3. Theoretical resistance curves for 
the motion of an asbestos suspension in a 
pipe Dp = 98 ran with different wall rough- 
nesses: i) for water; 2, 3) for a suspen- 
sions with a concentration of i.i and 2.4 
wt. %, respectively, at ks/D D = 8.4"10-4; 
4, 5) same with ks/D p = 0; 6~ 7) critical 
values of ~w corresponding to the transi- 
tion from the flow regime for hydraulically 
smooth pipes to the regime for rough pipes 
for curves 2 and 3. 

sion; p, pressure; ~, v, dynamic and kinematic viscosities of the dispersion medium; T0, 
limiting shear stress; H, intensity of shear strain rate; A, eddy viscosity, or coefficient 
of turbulent exchange; ~12, component of stress tensor; Tw, TWef, shear stress and effective 

shear stress on the pipe wall; v,, V,ef, dynamic and effective dynamic velocity; R, Ref, 
radius and effective radius of pipe; Uma x, maximum velocity; c, constant of integration in 
(i0); K, 6, D, acr.w, constants of water; <n, ~n, Dn, ~cr, parameters of the suspension de- 
pendent on its properties (concentration, type of fibers, etc.); Y0, distance from wall to 
boundary of turbulent core of flow; 8n-f, effective value of ~n; ~, parameter; u0, velocity 
next to the boundary of the turbulent core of the flow; ks, equivalent sandy roughness of 

' parameter of the suspension characterizing its flow in a hydraulically rough pipe wall; Dn, 
pipe; 7, Yef, constant in (19) and its effective value; a, radius of fibrous rod in the cen- 
ter of the flow; S, cross-sectional area of pipe; Sa, area of annular cross section of pipe 
in which the dispersed suspension flows; Dp, diameter of pipe; Pn, values of the suspension 
parameters <n, ~n, Dn with a value of ~, - close to zero; p', values of the suspension param- �9 -e~ n 
eters Kn, 8n, Dn with the glven value of ~w -; Pw, values of the constants K, 6, D for water; 
k n, coefficient; U~v , mean velocity in the ~nular section of the channel Sa; Uav, mean 
velocity in the pipe; S, tensor of shear strain rate. 
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